
Scope of variables. Methods in Java.

♦ In Java variables cannot be accessed outside of the code block { } in which they are created
(unless they have the public modifier in front of them)

♦ A variable is destroyed when the program reaches the closing } of the code block in which it was
declared.

public static void main(String[] args) {
int x = 9;
System.out.println(x);

} //x is destroyed here

Here’s another example:

public static void main(String[] args) {

if (1 < 2) {
int x = 9;
System.out.println(x);

}

x++; //ERROR: x cannot be found. It doesn't exist

for (int i = 0; i < 10; i++) {
System.out.print(i);

} //i is destroyed here

System.out.println(i); //ERROR: i does not exist.

int j;

for (j = 0; j < 5; j++) {
System.out.print("*");

}

System.out.println(j); //there is no problem accessing j here
}

This also works in methods:

public static void main(String[] args) {
String food = "cake";

method1();

method2(food); //we can pass the variable to the method

} //varible 'food' is destroyed here

static void method1() {
System.out.println("Let them eat " + food);

 //ERROR: variable 'food' cannot be found
}

static void method2(String str) {
System.out.println("Let them eat " + str);
//prints "Let them eat cake"

}

There are other notes explaining how methods work.
http://quarkphysics.ca/ICS3U1/unit3/method2.htm
http://quarkphysics.ca/ICS3U1/unit3/method3.htm

Unfortunately there are a whole lot of things to learn when you first learn to program.
Java has a huge learning curve at the start.

Sometimes it’s best to just start programming and then figure out what everything means and how it
works later on.

http://quarkphysics.ca/ICS3U1/unit3/method3.htm
http://quarkphysics.ca/ICS3U1/unit3/method2.htm

Local and global variables

♦ Global variables can be accessed by all methods in that class.
♦ Global variables are automatically initialized to a default value (e.g. 0 or "")
♦ Local variables must be initialized before you can use them.

public class Temp2 {

//GLOBAL VARIABLES
static int y; //y is set to zero

public static void main(String[] args) {

y = y + 10; //no problem here as y is automatically set to zero

int z; //z has no value!

z = z + 10; //ERROR: local variable z has not been initialized
}

}

Try this program:
public class Temp2 {

//**** GLOBAL VARIABLES *****
//static
static int num = 5;
//instance
int length = 24;

public static void main(String[] args) {
System.out.println("global num = " + num);

num *=100;
System.out.println("global num = " + num);

System.out.println(length);
//ERROR: Cannot make a static reference to the non-static field 'length'

//this is a local variable since it’s declared inside a method.
int num = -66;

System.out.println("local num = " + num);
num--;
System.out.println("local num = " + num);

System.out.println("global num = " + Temp2.num);
}

}

Summarizing the previous examples:

♦ A static method cannot access anything that is not static. (Unless you create an object, using “new ___”)
♦ Local variables will shadow global variables that have the same name.
♦ Global variables can always be accessed by typing the classname first: e.g. Temp2.num, Math.PI .

	Local and global variables

